ABOUT THE CUSTOMER

Our customer is a producer of logging deployment systems for the Oil & Gas industry. They operate as a subsidiary of one of the world’s leading oilfield service providers, with over 105,000 employees operating in over 85 countries.

The main product for the customer is gamma ray logging technology—an efficient, cost-effective alternative to standard wireline conveyance and LWD (Logging While Drilling). This technology is frequently used in HPHT operations and open hole logging in horizontal, high-angle and unstable wells.

CHALLENGE

A gamma ray logging system is composed of multiple devices and components that work together to gather the required formation data. One key component is a gamma ray device that provides insight into the mineral composition of the formations. In order to collect the formation data, gamma rays must pass through a small thermoplastic window located on the logging tool. The window is critical to the functionality of the tool.

The window on the customer’s tool was manufactured using a virgin PEEK material. After extended use of the tool in HPHT conditions, THE CUSTOMER EXPERIENCED EXTRUSION ISSUES WITH THE WINDOW. The window extrusion jeopardized the performance of the logging tool and its ability to collect the critical data needed for effective drilling of the customer’s wells.

SOLUTION

Greene, Tweed was tasked with examining the extrusion issue and recommending a replacement material for the virgin PEEK—something that would increase tool reliability and withstand the customer’s harsh HPHT operations.

The recommendation was to REPLACE THE CURRENT VIRGIN PEEK MATERIAL WITH A NEW VIRGIN MATERIAL, ARLON 3000 XT – a pioneering thermoplastic from Greene, Tweed that is tested and proven to withstand harsh drilling environments.

ARLON® 3000 XT: 30% STRONGER

30% STRONGER than any other material tested in all gas environments with a CHEMICAL RESISTANCE TO SURVIVE IN HARSH ENVIRONMENTS

SUPERIOR EXTRUSION RESISTANCE at temperatures up to 350°C (662°F)

OUTPERFORMS VIRGIN AND FILLED GRADES OF PEEK AND PEKEKK in extrusion testing at 35 ksi and 550°F (288°C)

RESULTS

The customer proceeded to conduct field testing with the tool window produced with ARLON 3000 XT. They reported positive results:

ARLON 3000 XT has been tested and proven to provide the necessary temperature and pressure resistance for the window component, and the customer has reported plans for future tool production using ARLON 3000 XT as the material of choice for the window component.

ARLON® 3000 XT: REDUCING EXTRUSION FAILURES IN HPHT CONDITIONS

ABOUT THE CUSTOMER

Our customer is a producer of logging deployment systems for the Oil & Gas industry. They operate as a subsidiary of one of the world’s leading oilfield service providers, with over 105,000 employees operating in over 85 countries.

The main product for the customer is gamma ray logging technology—an efficient, cost-effective alternative to standard wireline conveyance and LWD (Logging While Drilling). This technology is frequently used in HPHT operations and open hole logging in horizontal, high-angle and unstable wells.

CHALLENGE

A gamma ray logging system is composed of multiple devices and components that work together to gather the required formation data. One key component is a gamma ray device that provides insight into the mineral composition of the formations. In order to collect the formation data, gamma rays must pass through a small thermoplastic window located on the logging tool. The window is critical to the functionality of the tool.

The window on the customer’s tool was manufactured using a virgin PEEK material. After extended use of the tool in HPHT conditions, THE CUSTOMER EXPERIENCED EXTRUSION ISSUES WITH THE WINDOW. The window extrusion jeopardized the performance of the logging tool and its ability to collect the critical data needed for effective drilling of the customer’s wells.

SOLUTION

Greene, Tweed was tasked with examining the extrusion issue and recommending a replacement material for the virgin PEEK—something that would increase tool reliability and withstand the customer’s harsh HPHT operations.

The recommendation was to REPLACE THE CURRENT VIRGIN PEEK MATERIAL WITH A NEW VIRGIN MATERIAL, ARLON 3000 XT – a pioneering thermoplastic from Greene, Tweed that is tested and proven to withstand harsh drilling environments.

ARLON® 3000 XT: 30% STRONGER

30% STRONGER than any other material tested in all gas environments with a CHEMICAL RESISTANCE TO SURVIVE IN HARSH ENVIRONMENTS

SUPERIOR EXTRUSION RESISTANCE at temperatures up to 350°C (662°F)

OUTPERFORMS VIRGIN AND FILLED GRADES OF PEEK AND PEKEKK in extrusion testing at 35 ksi and 550°F (288°C)

RESULTS

The customer proceeded to conduct field testing with the tool window produced with ARLON 3000 XT. They reported positive results:

ARLON 3000 XT has been tested and proven to provide the necessary temperature and pressure resistance for the window component, and the customer has reported plans for future tool production using ARLON 3000 XT as the material of choice for the window component.

ARLON® 3000 XT: REDUCING EXTRUSION FAILURES IN HPHT CONDITIONS

ABOUT THE CUSTOMER

Our customer is a producer of logging deployment systems for the Oil & Gas industry. They operate as a subsidiary of one of the world’s leading oilfield service providers, with over 105,000 employees operating in over 85 countries.

The main product for the customer is gamma ray logging technology—an efficient, cost-effective alternative to standard wireline conveyance and LWD (Logging While Drilling). This technology is frequently used in HPHT operations and open hole logging in horizontal, high-angle and unstable wells.

CHALLENGE

A gamma ray logging system is composed of multiple devices and components that work together to gather the required formation data. One key component is a gamma ray device that provides insight into the mineral composition of the formations. In order to collect the formation data, gamma rays must pass through a small thermoplastic window located on the logging tool. The window is critical to the functionality of the tool.

The window on the customer’s tool was manufactured using a virgin PEEK material. After extended use of the tool in HPHT conditions, THE CUSTOMER EXPERIENCED EXTRUSION ISSUES WITH THE WINDOW. The window extrusion jeopardized the performance of the logging tool and its ability to collect the critical data needed for effective drilling of the customer’s wells.

SOLUTION

Greene, Tweed was tasked with examining the extrusion issue and recommending a replacement material for the virgin PEEK—something that would increase tool reliability and withstand the customer’s harsh HPHT operations.

The recommendation was to REPLACE THE CURRENT VIRGIN PEEK MATERIAL WITH A NEW VIRGIN MATERIAL, ARLON 3000 XT – a pioneering thermoplastic from Greene, Tweed that is tested and proven to withstand harsh drilling environments.

ARLON® 3000 XT: 30% STRONGER

30% STRONGER than any other material tested in all gas environments with a CHEMICAL RESISTANCE TO SURVIVE IN HARSH ENVIRONMENTS

SUPERIOR EXTRUSION RESISTANCE at temperatures up to 350°C (662°F)

OUTPERFORMS VIRGIN AND FILLED GRADES OF PEEK AND PEKEKK in extrusion testing at 35 ksi and 550°F (288°C)

RESULTS

The customer proceeded to conduct field testing with the tool window produced with ARLON 3000 XT. They reported positive results:

ARLON 3000 XT has been tested and proven to provide the necessary temperature and pressure resistance for the window component, and the customer has reported plans for future tool production using ARLON 3000 XT as the material of choice for the window component.

ARLON® 3000 XT: REDUCING EXTRUSION FAILURES IN HPHT CONDITIONS

ABOUT THE CUSTOMER

Our customer is a producer of logging deployment systems for the Oil & Gas industry. They operate as a subsidiary of one of the world’s leading oilfield service providers, with over 105,000 employees operating in over 85 countries.

The main product for the customer is gamma ray logging technology—an efficient, cost-effective alternative to standard wireline conveyance and LWD (Logging While Drilling). This technology is frequently used in HPHT operations and open hole logging in horizontal, high-angle and unstable wells.

CHALLENGE

A gamma ray logging system is composed of multiple devices and components that work together to gather the required formation data. One key component is a gamma ray device that provides insight into the mineral composition of the formations. In order to collect the formation data, gamma rays must pass through a small thermoplastic window located on the logging tool. The window is critical to the functionality of the tool.

The window on the customer’s tool was manufactured using a virgin PEEK material. After extended use of the tool in HPHT conditions, THE CUSTOMER EXPERIENCED EXTRUSION ISSUES WITH THE WINDOW. The window extrusion jeopardized the performance of the logging tool and its ability to collect the critical data needed for effective drilling of the customer’s wells.

SOLUTION

Greene, Tweed was tasked with examining the extrusion issue and recommending a replacement material for the virgin PEEK—something that would increase tool reliability and withstand the customer’s harsh HPHT operations.

The recommendation was to REPLACE THE CURRENT VIRGIN PEEK MATERIAL WITH A NEW VIRGIN MATERIAL, ARLON 3000 XT – a pioneering thermoplastic from Greene, Tweed that is tested and proven to withstand harsh drilling environments.

ARLON® 3000 XT: 30% STRONGER

30% STRONGER than any other material tested in all gas environments with a CHEMICAL RESISTANCE TO SURVIVE IN HARSH ENVIRONMENTS

SUPERIOR EXTRUSION RESISTANCE at temperatures up to 350°C (662°F)

OUTPERFORMS VIRGIN AND FILLED GRADES OF PEEK AND PEKEKK in extrusion testing at 35 ksi and 550°F (288°C)

RESULTS

The customer proceeded to conduct field testing with the tool window produced with ARLON 3000 XT. They reported positive results:

ARLON 3000 XT has been tested and proven to provide the necessary temperature and pressure resistance for the window component, and the customer has reported plans for future tool production using ARLON 3000 XT as the material of choice for the window component.

ARLON® 3000 XT: REDUCING EXTRUSION FAILURES IN HPHT CONDITIONS

ABOUT THE CUSTOMER

Our customer is a producer of logging deployment systems for the Oil & Gas industry. They operate as a subsidiary of one of the world’s leading oilfield service providers, with over 105,000 employees operating in over 85 countries.

The main product for the customer is gamma ray logging technology—an efficient, cost-effective alternative to standard wireline conveyance and LWD (Logging While Drilling). This technology is frequently used in HPHT operations and open hole logging in horizontal, high-angle and unstable wells.